Graduate Comprehensive Examination

Department of Mathematical Sciences

MA540, Probability and Mathematical Statistics I

January 19, 2017

1. Let $X, Y \stackrel{ind}{\sim} \text{Gamma}(1, 1)$ and $S = \frac{X}{p} - \frac{Y}{1-p}, 0 . Find the <math>p^{th}$ quantile of S. What happens when p = 1/2?

2. Suppose $Z \sim \text{Beta}(\alpha, \beta + \gamma)$. Show that Z can be written as Z = XY, where X and Y are independent with $X \sim \text{Beta}(\alpha, \beta)$ and $Y \sim \text{Beta}(\alpha + \beta, \gamma)$.

3. Let $Z \mid X = x, \delta \sim \text{Normal}(\delta x, 1 - \delta^2), |\delta| < 1 \text{ and } X \sim \text{Normal}(0, 1), x > 0$ (half normal). Show that $f(z) = 2\phi(z)\Phi(\lambda z)$, where $\lambda = \delta/\sqrt{1 - \delta^2}$ and $\phi(\cdot)$ and $\Phi(\cdot)$ are respectively the pdf and cdf of the standard normal random variable. Find the moment generating function of Z.

4. Suppose that $X, Y|Z \sim \text{Bernoulli}(Z)$ and $Z \sim \text{Beta}(\alpha, \beta)$.

- (a) Find the expectation of X
- (b) Find the Variance of X.
- (c) Find covariance of X and Y.
- (d) Show that X and Y are identically distributed.

5. Let $X_n \sim \text{Poisson}(n\lambda)$ where the positive integer n is large and $0 < \lambda$.

- (a) Find the limiting distribution of $\sqrt{n} \left(\frac{X_n}{n} \lambda \right)$.
- (b) Find the limiting distribution of $\sqrt{n} \left[\sqrt{\frac{X_n}{n}} \sqrt{\lambda} \right]$.

6. Show that if U and V are independent uniform (-1/2,1/2) variables and $U^2+V^2\leq 1/4$, then U/V is a Cauchy variate.